在本文中,我们提出了一种新的贝叶斯在线预测算法,用于局部可观察性(ATPO)下的Ad Hoc团队的问题设置,这使得与未知的队友执行未知任务的运行协作,而无需预先协调协议。与以前的作品不同,假设环境的完全可观察状态,ATPO使用代理商的观察来确定队友正在执行哪项任务的部分可观察性。我们的方法既不假设队友的行为也不是可见的,也不是环境奖励信号。我们在三个域中评估ATPO - 追踪域的两个修改版本,具有部分可观察性和过核域。我们的研究结果表明,ATPO在识别可能的任务中的大型文库中,在近乎最佳的时间内求助,以及在适应越来越大的问题尺寸方面可以进行高效的速度,可以有效和强大。
translated by 谷歌翻译
Video segmentation consists of a frame-by-frame selection process of meaningful areas related to foreground moving objects. Some applications include traffic monitoring, human tracking, action recognition, efficient video surveillance, and anomaly detection. In these applications, it is not rare to face challenges such as abrupt changes in weather conditions, illumination issues, shadows, subtle dynamic background motions, and also camouflage effects. In this work, we address such shortcomings by proposing a novel deep learning video segmentation approach that incorporates residual information into the foreground detection learning process. The main goal is to provide a method capable of generating an accurate foreground detection given a grayscale video. Experiments conducted on the Change Detection 2014 and on the private dataset PetrobrasROUTES from Petrobras support the effectiveness of the proposed approach concerning some state-of-the-art video segmentation techniques, with overall F-measures of $\mathbf{0.9535}$ and $\mathbf{0.9636}$ in the Change Detection 2014 and PetrobrasROUTES datasets, respectively. Such a result places the proposed technique amongst the top 3 state-of-the-art video segmentation methods, besides comprising approximately seven times less parameters than its top one counterpart.
translated by 谷歌翻译
Scene change detection is an image processing problem related to partitioning pixels of a digital image into foreground and background regions. Mostly, visual knowledge-based computer intelligent systems, like traffic monitoring, video surveillance, and anomaly detection, need to use change detection techniques. Amongst the most prominent detection methods, there are the learning-based ones, which besides sharing similar training and testing protocols, differ from each other in terms of their architecture design strategies. Such architecture design directly impacts on the quality of the detection results, and also in the device resources capacity, like memory. In this work, we propose a novel Multiscale Cascade Residual Convolutional Neural Network that integrates multiscale processing strategy through a Residual Processing Module, with a Segmentation Convolutional Neural Network. Experiments conducted on two different datasets support the effectiveness of the proposed approach, achieving average overall $\boldsymbol{F\text{-}measure}$ results of $\boldsymbol{0.9622}$ and $\boldsymbol{0.9664}$ over Change Detection 2014 and PetrobrasROUTES datasets respectively, besides comprising approximately eight times fewer parameters. Such obtained results place the proposed technique amongst the top four state-of-the-art scene change detection methods.
translated by 谷歌翻译
Research on remote sensing image classification significantly impacts essential human routine tasks such as urban planning and agriculture. Nowadays, the rapid advance in technology and the availability of many high-quality remote sensing images create a demand for reliable automation methods. The current paper proposes two novel deep learning-based architectures for image classification purposes, i.e., the Discriminant Deep Image Prior Network and the Discriminant Deep Image Prior Network+, which combine Deep Image Prior and Triplet Networks learning strategies. Experiments conducted over three well-known public remote sensing image datasets achieved state-of-the-art results, evidencing the effectiveness of using deep image priors for remote sensing image classification.
translated by 谷歌翻译
Machine Learning algorithms have been extensively researched throughout the last decade, leading to unprecedented advances in a broad range of applications, such as image classification and reconstruction, object recognition, and text categorization. Nonetheless, most Machine Learning algorithms are trained via derivative-based optimizers, such as the Stochastic Gradient Descent, leading to possible local optimum entrapments and inhibiting them from achieving proper performances. A bio-inspired alternative to traditional optimization techniques, denoted as meta-heuristic, has received significant attention due to its simplicity and ability to avoid local optimums imprisonment. In this work, we propose to use meta-heuristic techniques to fine-tune pre-trained weights, exploring additional regions of the search space, and improving their effectiveness. The experimental evaluation comprises two classification tasks (image and text) and is assessed under four literature datasets. Experimental results show nature-inspired algorithms' capacity in exploring the neighborhood of pre-trained weights, achieving superior results than their counterpart pre-trained architectures. Additionally, a thorough analysis of distinct architectures, such as Multi-Layer Perceptron and Recurrent Neural Networks, attempts to visualize and provide more precise insights into the most critical weights to be fine-tuned in the learning process.
translated by 谷歌翻译
Evaluating new techniques on realistic datasets plays a crucial role in the development of ML research and its broader adoption by practitioners. In recent years, there has been a significant increase of publicly available unstructured data resources for computer vision and NLP tasks. However, tabular data -- which is prevalent in many high-stakes domains -- has been lagging behind. To bridge this gap, we present Bank Account Fraud (BAF), the first publicly available privacy-preserving, large-scale, realistic suite of tabular datasets. The suite was generated by applying state-of-the-art tabular data generation techniques on an anonymized,real-world bank account opening fraud detection dataset. This setting carries a set of challenges that are commonplace in real-world applications, including temporal dynamics and significant class imbalance. Additionally, to allow practitioners to stress test both performance and fairness of ML methods, each dataset variant of BAF contains specific types of data bias. With this resource, we aim to provide the research community with a more realistic, complete, and robust test bed to evaluate novel and existing methods.
translated by 谷歌翻译
传播模型已被证明对各种应用程序有效,例如图像,音频和图形生成。其他重要的应用是图像超分辨率和逆问题的解决方案。最近,一些作品使用了随机微分方程(SDE)将扩散模型推广到连续时间。在这项工作中,我们介绍SDE来生成超分辨率的面部图像。据我们所知,这是SDE首次用于此类应用程序。所提出的方法比基于扩散模型的现有超级分辨率方法提供了改进的峰值信噪比(PSNR),结构相似性指数(SSIM)和一致性。特别是,我们还评估了该方法在面部识别任务中的潜在应用。通用面部特征提取器用于比较超分辨率图像与地面真相,并获得了与其他方法相比,获得了卓越的结果。我们的代码可在https://github.com/marcelowds/sr-sde上公开获取
translated by 谷歌翻译
能够分析和量化人体或行为特征的系统(称为生物识别系统)正在使用和应用变异性增长。由于其从手工制作的功能和传统的机器学习转变为深度学习和自动特征提取,因此生物识别系统的性能增加到了出色的价值。尽管如此,这种快速进步的成本仍然尚不清楚。由于其不透明度,深层神经网络很难理解和分析,因此,由错误动机动机动机的隐藏能力或决定是潜在的风险。研究人员已经开始将注意力集中在理解深度神经网络及其预测的解释上。在本文中,我们根据47篇论文的研究提供了可解释生物识别技术的当前状态,并全面讨论了该领域的发展方向。
translated by 谷歌翻译
在Robocup小型联盟(SSL)中,鼓励团队提出解决方案,以便仅使用嵌入式感应信息在SSL领域执行基本足球任务。因此,这项工作提出了一种嵌入式的单眼视觉方法,用于检测物体和估计足球场内的相对位置。通过假设对象放在地面上,并且板载摄像头的位置固定在机器人上,可以利用来自环境的先验知识。我们在NVIDIA Jetson Nano上实施了建议的方法,并使用SSD Mobilenet V2用于2D对象检测,并具有张力优化,检测球,机器人和目标,距离高达3.5米。球定位评估表明,所提出的解决方案克服了当前使用的SSL视觉系统,该系统的位置超过1米,距离板载摄像头14.37毫米。此外,所提出的方法以每秒30帧的平均处理速度实现实时性能。
translated by 谷歌翻译
该论文描述了铁路数据集,这是葡萄牙波尔图市的城市地铁公共交通服务的预测维护项目的结果。数据是在2020年至2022年之间收集的,旨在开发用于在线异常检测和故障预测的机器学习方法。通过捕获几个类似的传感器信号(压力,温度,电流消耗),数字信号(控制信号,离散信号)和GPS信息(纬度,经度和速度),我们提供了一个框架,可以轻松使用和开发用于该框架新的机器学习方法。我们认为该数据集包含一些有趣的特征,并且可以成为预测维护模型的良好基准。
translated by 谷歌翻译